

Investigation of
Flexibility and FreezeThaw Tolerance of Cu –
Water HPs for Space
Applications

Sergey Semenov John Thayer

Introduction

- Copper water HPs have been used in various cooling applications including space applications.
- Copper water HPs can be bent into various shapes:

- Do they have enough flexibility for a particular application?
 - This presentation provides a guideline on how to estimate flexibility of copper – water HPs.
- Copper water HPs can be made to survive freezing.
 - Presented results on freeze-thaw cycling of copper water HPs.

Cantilever Beam Deflection

$$\delta = \frac{FL^3}{3EI}$$
 (elastic deflection of the free end)
 $\phi = \frac{FL^2}{2EI}$ (angle of deflection in radians)
 E – module of elasticity
 I – area moment of inertia
of the beams cross section

$$I = \frac{\pi(D^2 - d^2)}{64}$$

Measurement Setup

Test Data

FEA Modeling

- Solid Works Simulation package
 - Solid Works 2015 Premium x64 edition (SP 1.1)
- Boundary conditions:

1 Load applied

Fixed

Mesh

Study name	Static 1 (-Default-)
Mesh type	Solid Mesh
Mesher Used	Curvature based mesh
Jacobian points	4 points
Max Element Size	0.0088498 in
Min Element Size	0.0048498 in
Mesh quality	High
Total nodes	2080642
Total elements	1237467
Maximum Aspect Ratio	5.3611
Percentage of elements with Aspect Ratio < 3	99.8
Percentage of elements with Aspect Ratio > 10	0
% of distorted elements (Jacobian)	0

FEA Typical Results (6mm Case)

Conclusions on Flexibility Investigation

- Annealed copper tubing and HPs have very small elastic region.
- Plastic deformation observed when end displacement exceeds 1% of the HP length.
- Simple analytical formula (slide 3) can be used for prediction of the end displacements when they are small (< 1% of the HP length).
- FEA results are in good agreement with analytical calculations.
- Maximum HP flexibility can be approximated as annealed tubing.
- Work hardening has not been investigated in this study.

Freeze-Thaw Tolerance of HPs

• Freeze-thaw tolerance of HPs depends on the wick flexibility, proper fluid charge and HP length.

The Longest Heat Pipe Freeze/Thaw Test

Copper/Water Heat Pipes

- U-shaped
- Bent and Flattened
- Sintered Powder Metal Wick
- 1650 Thermal Freeze/ Thaw Cycles
- -40°C to +100°C
- 5 Minute Cycle Time

A More Typical Freeze/Thaw Test

- Typical freeze/thaw test
 - Acceptance Test ~ 25 cycles
 - Qualification Test ~ 100 cycles
- Thermal Chamber runs almost non-stop
 - 3.4 freeze/thaw tests per week
 - Common settings
 - 10 cycles, 25 cycles, 100 cycles
 - -15C to +25C, -40C to +90C

Freeze-Thaw Cycling of Copper – Water HPs

- Can be made freeze-thaw tolerant
 - Proper wick sintering
 - Proper fluid charge
 - Static lift height must exceed the vertical HP length in 1G environment
- Thermacore performs an acceptance test on every flight unit.
- Dimensional inspection and thermal performance testing conducted before and after freeze-thaw cycling.